Вертикальное армирование столбчатого фундамента

Колонна — обязательная составная часть каркасных сооружений сборного типа, требуется подготовка основания. Здание, своды из железобетона или металла, обшивка создают большой вес, сильно давят на грунт. Поэтому нужно заложить надежный фундамент, который хорошо распределяет нагрузку.

Выбор арматурных стержней

Для изготовления арматурного каркаса в конструкции монолитного фундамента используется лишь арматура с маркировкой класса А400, устаревший вариант маркировки такой арматуры AIII, причём использовать прутья, относящиеся к классу ниже указанного, категорически запрещено.

Во время выбора арматуры не лишним будет ориентироваться в такой маркировке и знать визуальные отличия арматурных прутьев друг от друга в зависимости от классов:

  • для класса А240 или AI характерна гладкая поверхность;

    Арматура А240.

  • для А300 или AII характерен периодический профиль, который имеет кольцевой узор;

    Арматура А300.

  • класс А400 или AIII – это разновидность, которая подходит для проведения армирования бетонной конструкции монолитного фундамента. Она имеет профиль серповидного типа, иными словами называемый «елочкой».

Предварительные расчеты

Перед заливкой выполняют обязательные вычисления. Нужно правильно рассчитать будущую нагрузку от здания, с учетом облицовочной отделки, техники, мебели, людей.

По результатам вычислений находят предполагаемую массу, уровень давления на местную почву. Чем тяжелее конструкция, либо рыхлее грунт, тем глубже должен закладываться фундамент.

Плотность земли на участке важна. Перед строительством рекомендуется изучить грунт, собрать сведения об особенностях климата.

Плотная земля лучше воспринимает нагрузку от здания. Чем больше опорная площадь у фундамента, тем большую нагрузку основание сможет распределить без разрушений. Даже если грунтовая влага пролегает высоко, почва может промерзать несколько ниже, эти два параметра могут быть одинаковыми, но это не всегда так.

Засчитываются неровности ландшафта, разные вкрапления в общий состав почвы. Требуется сделать фундамент, чтобы возлагаемая масса перераспределялась равномерно.

Армирование монолитной плиты перекрытия

Расчет арматуры для плиты перекрытия в частном строительстве выполняется редко. Это достаточно сложная процедура, выполнить которую сможет не каждый инженер. Чтобы заармировать плиту перекрытия, нужно учесть ее конструкцию. Она бывает следующих типов:

  • сплошное;
  • ребристое:
  • по профлисту.

Последний вариант рекомендуется при выполнении работ самостоятельно. В этом случае нет необходимости устанавливать опалубку. Кроме того, за счет использования металлического листа повышается несущая способность конструкции. Самая низкая вероятность ошибок достигается при изготовлении перекрытия по профлисту. Стоит отметить, что оно является одним из вариантов ребристой плиты.

Перекрытие с ребрами залить непрофессионалу может быть проблематично. Но такой вариант позволяет существенно сократить расход бетона. Конструкция в этом случае подразумевает наличие усиленных ребер и участков между ними.

Еще одни вариант — изготовит сплошную плиту перекрытия. В этом случае армирование и технология похожи на процесс изготовления плитного фундамента. Основное отличие — класс используемого бетона. Для монолитного перекрытия он не может быть ниже В25.

Стоит рассмотреть несколько вариантов армирования.

Где применяется фундамент стаканного типа

Стаканный фундамент классифицируется как основание неглубокого заложения, при его возведении нет необходимости производить большой объем земляных работ. За счет того, что вся конструкция поставляется с завода в уже готовом к монтажу виде, установить сам фундамент и возвести перекрытия и стены здания можно в минимальные сроки. После монтажа стаканного фундамента не требуется выжидать паузу в строительных работах, как в случае с монолитными фундаментами, которые требуют месячного простоя для отвердевания бетона.

Вышеуказанные преимущества являются ключевыми факторами, обуславливающими востребованность стаканных фундаментов в производственном строительстве. Такие основания незаменимы при обустройстве сельскохозяйственных помещений — свинарников, стойл для крупного рогатого скота, курятников, хранилищ для продукции растениеводства.

Рис 1.4: Использование стаканного фундамента при строительстве двухэтажного промышленного здания

Также стаканные фундаменты задействуются при строительстве инфраструктурных промышленных объектов — складов и ангаров, гаражей, канализационных станций.

В автодорожном строительстве стаканный фундамент используется при возведении мостов, также он нередко применяется при обустройстве подвальных конденсационных этажей на атомных электростанциях.

Важно! В индивидуальном строительстве стаканный фундамент, из-за высокой стоимости, используется крайне редко. На нем могут возводится некоторые виды каркасных домов, однако для частной застройки применение свайного фундамента предпочтительнее по всем параметрам.

Расчет столбчатых фундаментов металлического каркаса

Уважаемые коллеги, продолжаем рассматривать небольшие примеры использования ФОК Комплекс для расчета фундаментов. Сегодня мы рассмотрим примеры расчета столбчатых фундаментов металлического каркаса. В начале произведем ручной расчет 2-х фундаментов с дальнейшим сравнением с полученными результатами по ФОК Комплекс.

Пример расчета столбчатых фундаментов. Исходные данные

Площадка строительства характеризуется следующими атмосферно-климатическими воздействиями и нагрузками:

  • вес снегового покрова (расчетное значение) — 240 кг/м2;
  • давление ветра — 38 кг/м2;

Геология

Схема маркировки фундаментов

Относительная разность осадок (Δs/L)u = 0,004;

Максимальная Sumax или средняя Su осадка = 15 см;

Нагрузки на столбчатые фундаменты получены из ПК ЛИРА.

Для ручного расчета рассмотрим фундаменты Фм3 и Фм4

1. Ручной расчет

Определение размеров подошвы фундамента

Основные размеры подошвы фундаментов определяем исходя из расчета оснований по деформациям. Площадь подошвы предварительно определим из условия:

P ≤ R,

где P- среднее давление по подошве фундамента, определяем по формуле:

P = ( N0 / A )

N0 = P · A

A — площадь подошвы фундамента.

N0 = N +G

N – вертикальная нагрузка на обрезе фундамента

G – вес фундамента с грунтом на уступах

G = A · γ · d

где γ — среднее значение удельного веса фундамента и грунта на его обрезах, принимаемое равным 2 т/м3;

d — глубина заложения;

P · A = N + A · γ · d

A · (P — γ · d ) = N

A = N / (P — γ · d )

Расчет столбчатых фундаментов металлического каркаса

Для предварительного определения размеров фундаментов, P определяем по таблице В.3 [СП ]

Р = 250 кПа = 25,48 т/м2.

Для фундамента Фм3, N = 35,049 т

A = 35,049 т / (25,48 т/м2 — 2,00 т/м3 · 3,300 м) = 35,049 т/18,88 т/м2 = 1,856 м2.

A = b2

Принимаем габариты фундамента b = 1,5 м

Для фундамента Фм4, N = 57,880 т

A = 57,880 т / (25,48 т/м2 — 2,00 т/м3 · 3,300 м ) = 57,880 т / 18,88 т/м2 = 3,065 м2.

A = b2

Принимаем габариты фундамента b = 1,8 м

1. Определение расчетного сопротивления грунта основания

5.6.7 При расчете деформаций основания фундаментов с использованием расчетных схем, указанных в 5.6.6, среднее давление под подошвой фундамента р не должно превышать расчетного сопротивления грунта основания R, определяемого по формуле

где γс1 и γс2 коэффициенты условий работы, принимаемые по таблице 5.4[1];

k- коэффициент, принимаемый равным единице, если прочностные характеристики грунта (φп и сп) определены непосредственными испытаниями, и k=1,1, если они приняты по таблицам приложения Б[1];

Mγ, Мq, Mc- коэффициенты, принимаемые по таблице 5.5[1];

kz- коэффициент, принимаемый равным единице при bd (d- глубина заложения фундамента от уровня планировки), в формуле (5.7)[1] принимают d1 = d и db = 0.

6 Расчетное сопротивления грунтов основания R, определяемое по формулам (В.1)[1] и (В.2)[1] с учетом значений R0 таблиц [1] приложения B[1], допускается применять для предварительного назначения размеров фундаментов в соответствии с указаниями разделов 5-6[1].

Исходные данные:

Расчет столбчатых фундаментов металлического каркаса

Основание фундаментом являются — суглинком лессовидным непросадочным полутвёрдой консистенции, желто-бурого цвета, с включением прослоев супеси, ожелезненный. (ИГЭ 2)

γс1= 1,10;

γс2= 1,00;

k= 1,00;

kz= 1,00;

Для фундамента Фм3 : b = 1,50 м;

Для фундамента Фм4 : b = 1,80 м;

γII = 1,780 т/м3;

γ'II = 1,691 т/м3;

сII= 1,100 т/м2;

d1 = 3,30 м;

db = 0,0 м;

Mγ = 0,72;

Мq= 3,87;

Mc= 6,45;

Для фундамента Фм3:

R = (1,10 ·1,00) / 1,00· [0,72 · 1,00 · 1,50 м · 1,780 т/м3 + 3,87· 3,30 м· 1,691 т/м3 +

+ (3,87 – 1,00) · 0,0· 1,691 т/м3 + 6,45·1,1 т/м2] = 1,10· (1,922 т/м2 +21,596 т/м2 +

Расчет столбчатых фундаментов металлического каркаса

+ 0,0 + 7,095 т/м2) = 33,674 т/м2.

Для фундамента Фм4:

R = (1,10 ·1,00) / 1,00 · [0,72 · 1,00 · 1,80 м·1,780 т/м3 + 3,87 · 3,30 м·1,691 т/м3 +

+ (3,87 – 1,00) ·0,0·1,691 т/м3 + 6,45·1,1 т/м2] = 1,10 · (2,307 т/м2 + 21,596 т/м2 +

+ 0,0 + 7,095 т/м2) = 34,098 т/м2.

2. Определение осадки

Осадку основания фундамента s, см, с использованием расчетной схемы в виде линейно деформируемого полупространства (см. 5.6.6[1]) определяют методом послойного суммирования по формуле

где b — безразмерный коэффициент, равный 0,8;

Какие требования предъявляются к арматуре?

Для выполнения работ прутки, как правило, используются марок А I и А III (А 400 С). При желании можно использовать композитную арматуру, она появилась на рынке относительно недавно, но уже хорошо себя зарекомендовала и имеет отличные характеристики.

Вообще, в данном случае лучше воспользоваться помощью опытного специалиста, он подскажет, какую именно арматуру стоит подобрать исходя из веса планируемой постройки. Стоит сразу отметить: экономить в данном случае нельзя, поскольку именно от фундамента зависит, насколько долго простоит здание.

Технология армирования столбчатого фундамента

Для того чтобы армирование было выполнено правильно, важно знать и учитывать особенности технологии.

Помните: любая конструкция, изготовленная из монолитного бетона, отлично переносит сжатие, но разрушается при растягивающих и изгибающих нагрузках. Именно для предотвращения этих негативных последствий и производится армирование, которое в данном случае выполняется вертикально – металлические стержни кладутся параллельно столбам.

Технология армирования столбчатого фундамента

Арматурные стержни заготавливаются заранее. Для процедуры необходимы прутья класса А-III. Каркас из расчета на один столб 40 на 40 сантиметров изготавливается из 4 вертикальных стержней. Его поперечное сечение должно быть меньше сечения столба на 4-5 сантиметров со всех сторон.

Если высота столба достигает двух метров и более, его обвязка производится в нескольких местах на расстоянии не более 70 сантиметров друг от друга. Согласно ГОСТу 10922-90, можно выбрать любой способ обвязки. Наиболее популярны сейчас два способа: при помощи стыковой электросварки и путем соединения элементов двойным узлом проволочными фиксаторами. Важный момент: процент содержания арматурных стержней в фундаменте четко прописан в СНиПе и не терпит отклонений. К примеру, для подколонников и колон он составляет всего 0,08% от площади сечения столба.

Запомните: металлолом не может служить в качестве материала для арматуры, это недопустимо и опасно.

Технология армирования столбчатого фундамента

Армирование ростверка

Образец устройства ростверка столбчатого фундамента

Без укрепления конструкции ростверка, армирование фундамента неэффективно, поскольку на нее оказывается точно такие же нагрузки, как и на все основание.

Технология армирования столбчатого фундамента

Важный момент: армирование ростверка производится по технологии укрепления ленточного основания. В данной процедуре помимо объемных металлоконструкций, можно применять и плоские закладные детали, такие как швеллер, толстолистовую полосу и уголок.

Эта технология предусматривает два пояса армирования, причем в верхнем поясе используются стержни большего сечения.

Таким образом, вместе с армированием ростверка появляется возможность полностью погрузить стержни в бетон, не применяя при этом антикоррозийное покрытие.

Технология армирования столбчатого фундамента

В данном видео представлена технология использования столбчатого фундамента при строительстве каркасного дома

Подводим итог: возведение фундамента – серьезная задача, к проведению которой необходимо подойти со всей серьезностью, тщательно изучив теорию и нормативные акты. Важно соблюдать технологию и регламентированные нормативными актами условия изготовления. Правильно выполненное армирование основания – залог прочности конструкции, ее долговечности.

Фундамент из бетонных свай. Частный дом Допуски отклонения свай по оси Сетка для фундамента и армирование стяжки Как произвести армирование плиты фундамента

Технология армирования столбчатого фундамента

Этапы строительства под монолитную колонну

При возведении частного коттеджа или дачи строительстве сооружают монолитный фундамент. Чтобы сэкономить материалы, опорные столбы выполняются в виде ступеней. Высота и число ступеней зависит от нагрузки.

Для основания выкапывают яму необходимого размера и укладывают на дно слой песка и щебня толщиной в 20 см. Если глубина фундамента большая, устраивают бетонную подушку. Затем возводят опалубку из фанеры или дерева.

Если размеры основания значительные, используют стальную опалубку. Асбестоцементные или бетонные трубы могут применяться как несъемная опалубка.

Армирование опор

Армирование выполняется по мере возведения фундамента. Используют для этого прутки диаметром в 12–16 мм, связанные или сваренные в готовые каркасы.

Величина подколонника может совпадать с сечением столба. Если требуется именно стакан, сооружают опалубку сложной формы.

Изготовление каркаса можно посмотреть в этом видео:

Монтаж башмака

Чтобы равномерно распределить нагрузку от здания, рекомендуют делать башмак – расширение нижней части скважины:

После схватывания раствора продолжают возведение фундамента.

Установка колонн

Начинают работу с сооружения армирующего каркаса:

Оптимальная температура строительства – выше +15 С. Если здание сооружают зимой, в бетон добавляют пластифицирующие добавки с тем, чтобы ускорить застывание.

Ростверк

Под железобетонные колонны возводят монолитный ростверк, по сути, это бетонная лента, усиленная стальными прутками. Используется при строительстве каркасных и панельных зданий, деревянных срубов:

Связывание каркаса выполняется в опалубке или на основании, а не на земле.

Подводим итоги – насколько необходим расчет арматуры на фундамент

Планируя строительство дома, бани или дачного строения, несложно определить потребность в арматуре своими руками. Пошаговые инструкции позволят на калькуляторе рассчитать метраж стержней для изготовления арматурной решетки, усиливающей основу здания. Зная, как рассчитать арматуру, можно самостоятельно выполнить вычисления, не прибегая к помощи сторонних специалистов. Правильно выполненные расчеты обеспечат прочность фундаментной основы, устойчивость здания, а также длительный ресурс эксплуатации.

Подводим итоги – насколько необходим расчет арматуры на фундамент
Подводим итоги – насколько необходим расчет арматуры на фундамент
Подводим итоги – насколько необходим расчет арматуры на фундамент

Плитный фундамент

Плитный фундамент представляет собой железобетонную плиты, залитую под всей площадью цеху.

Плитный фундамент
  • Для начала копается котлован глубиной 50-70 см.
  • После этого возводится песчаная подушка и уплотняется.
  • Далее укладывается слой гидроизоляции, на него укладывается утеплитель.
  • После этого плита армируется и заливается бетоном, полностью вся за 1 раз.

Такой фундамент не подвержен морозному пучению из-за своей большой площади соприкасания с грунтом. Верх плиты можно использовать как пол 1 этажа, что сокращает расходы. Однако, такой фундамент дороже всех выше представленных. Цена на такой фундамент в районе 3500-6500 тысяч за квадратный метр.

Читайте также:  Как сделать опорно-столбчатый фундамент из бетонных блоков